Adversarial_Observation package
Submodules
Adversarial_Observation.Attacks module
- class Adversarial_Observation.Attacks.Config(epsilon=0.1, attack_method='fgsm')[source]
Bases:
object
- Adversarial_Observation.Attacks.fgsm_attack(input_batch_data: Tensor, model: Module, input_shape: tuple, epsilon: float = 0.0) Tensor [source]
Adversarial_Observation.utils module
- Adversarial_Observation.utils.load_MNIST_data()[source]
Load the MNIST dataset and create data loaders.
- Returns:
(train_loader, test_loader) - Data loaders for training and testing.
- Return type:
tuple
Adversarial_Observation.visualize module
- Adversarial_Observation.visualize.visualize_gif(filenames: List[str], output_file: str = 'output.gif') None [source]
Create a GIF from a list of image filenames.
- Parameters:
filenames (List[str]) – List of image filenames.
output_file (str) – Output filename for the GIF (default: ‘output.gif’).
- Returns:
None